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Abstract

Although most work on fairness in machine learning has heretofore focused primarily on
single-shot classification or regression tasks, there is nascent literature on machine fairness
dynamics, that is, the temporal evolution of fairness measures as data-driven algorithmic
decisions and societal responses interact. We present a detailed survey of observational data
from historical studies in the applied sciences, as well as theoretical fairness results from
recent computer science, with the goal of synthesizing progress and insight from these two
perspectives. We describe models which we believe comprise the current state-of-the-art
among dynamical models of fairness, and discuss their efficacy as well as the motivations and
assumptions which underpin their chosen fairness criteria. We argue that both the experi-
mental and formal perspectives provide evidence for the necessity of dynamical considerations
and the inadequacy of a single-shot framework in real-world fairness applications.

1 Introduction

The study of fairness in machine learning has received much recent academic and media
attention, coinciding with a rising awareness that the data-based predictions made by machine
learning systems can and do encode existing biases from the observed data into their decision
rules. For example, [BCZ+16] showed that word embeddings trained using the common
word2vec model on the Google News dataset (see [MSC+13]) represented significant gender
stereotypes.

The formal study of fairness is difficult in that it exists at the turbulent junction of theory
and practice; formal tools can only do so much in the face of biased data. It is the disparity
between ideal notions of fairness and the biased nature of the observed world that necessitates
this difficulty, rather than the fact that one is using a computer to make a decision. This is
made formal in the next section.

Why Fairness is Hard

Numerous statistical definitions of fairness have been proposed in the machine learning liter-
ature, generally coinciding with accepted notions of fairness from the social science literature.
Taking A to be a sensitive attribute, X a feature, Y a true label, and Ŷ a predicted label1,
we have the following three fairness measures worth highlighting for their general acceptance:

Definition 1. Equal Opportunity requires equal selection rates across sensitive attributes.
Formally, this means that P[Ŷ = 1 | A = 1] = P[Ŷ = 1 | A = 0].

1Herein, all attributes, features, and labels are binary.
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Definition 2. Demographic parity requires equal true positive rates across sensitive at-
tributes. Formally, this means that P[Ŷ = 1 | A = 1 ∧ Y = 1] = P[Ŷ = 1 | A = 0 ∧ Y = 1].
This is also called balance for the positive class. Similarly, balance for the negative class
requires P[Ŷ = 1 | A = 1 ∧ Y = 0] = P[Ŷ = 1 | A = 0 ∧ Y = 0].

Definition 3. Calibration by group requires that for all possible predicted scores y ∈ Ŷ and
classes a ∈ A, P{Y = 1 | Ŷ = y,A = a} = y. When this score is used, Y, Ŷ are often not
binary.

It is important to note that these are all observational criteria, in the sense that they are
defined by probability distributions over the given features and labels (for more on observa-
tional criteria, see [BHN17]). This means that they necessarily cannot model causal factors
directly.

Certain philosophical positions naturally give rise to these fairness definitions. [FSV16]
introduces the mathematical notion of a construct space, which is meant to capture unobserved
features which effect the observed world; decisions are based on the observed world2. They
state two possible strong axioms: the WYSIWYG3 axiom, that there is only an ε-bounded
amount of distortion (intuitively, difference)4 between the construct and observed spaces,
and the WAE5 axiom that assumes the philosophical position that groups are approximately
equal in value in the construct space (the difference is again bounded by some ε > 0). They
show that under only the first axiom, calibration can always be achieved, whereas under the
second axiom demographic parity can always be achieved.

These fairness criteria are not mutually compatible however, except in the most restricted
settings. In [KMR16], Kleinberg et. al. show that it is only possible to concurrently satisfy
calibration and positive/negative class balance if at least one of the following hold:

• Measurement is perfect: we know everyone’s class label exactly. Fairness can be achieved
by classifying everyone accurately.

• Equal base rates: both classes have the same percentage of their members in the true
positive class. Fairness can be achieved by assigning everyone a uniform score equal to
the base rate.

Of course, neither of these restrictions are reflected in the observed world.
Calibration by group is the criterion which is naturally optimized by decisions based on

observational criteria (this is made formal in [LSH18]). As described in [LSH18], this implies
that calibration by group should only be accepted as a fairness criterion if we are comfortable
with the fairness of the underlying observational data. As the examples of Section 2 show,
this is hardly a defensible position in many real-world settings.

Beyond the difficulty of concurrently satisfying contrasting notions of fairness, it may also
not be possible to compose related fair decisions in a manner which is itself fair (see, eg,
[DI18]). As the literature on fairness dynamics makes clear, temporal dynamics can result in
unfair global effects under repeated application of a locally fair decision (see Section 3).

For a broad overview of fairness in machine learning, see [BHN17].

2 Empirical Lessons

The formal study of machine fairness dynamics is closely connected in its viewpoint to ample
historical work in the social sciences literature which model and evaluate the dynamical effects

2We note that this distinction between extra-sensory and perceivable reality is an age-old one.
3What You See Is What You Get
4See [FSV16] for a formalism.
5We’re All Equal
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of organizational decision rules.

Redlining

Redlining was a practice overseen by the US government-sponsored Home Owners’ Loan
Corporation (HOLC) beginning in 1935 in which neighbourhoods were categorized by their
“desirability”, a distinction which was used to assess creditworthiness of the residents and then
came to be reflected in home prices and social mobility among residents. The process primarily
negatively affected Black Americans, as the assigned creditworthiness score was a simple proxy
for race. This practice continued until the 1970s, when such open discrimination in lending
was made illegal. In [AN16], Appel. et al consider the longterm effects of this practice.
They show that relevant characteristics varied continuously across boundaries prior to the
introduction of redlining maps, whereas by 1990 home prices within redlined neighbourhoods
were approximately 5% lower than they would have been otherwise (controlling for factors
such as home size, age, state of repair, sales demand, etc). They characterize this state
as being the result of a dynamics wherein lower-scored neighbourhoods were less inhabited,
leading to a feedback loop of increasing home vacancy and depreciating value. Their analysis,
as well as other works (see eg [KDK06]), evidences that the fairness effects of a practice
are coupled with community responses and therefore necessarily have associated temporal
dynamics.

Affirmative Action

“Affirmative action” is a name given to a legal concept of fairness which corresponds to our
definition of demographic parity. It was initially brought up in the American context as a
method of increasing the representation of minorities in governmental positions, but has since
had a wider application in industry hiring and academic admissions.

[KRB+85] is an early observational study of the efficacy of affirmative-action policies on
the medical profession. The article notes that the number of individuals from disadvantaged
groups who were practicing physicians had doubled between 1970 and 1985, but considers such
a broad measure to be inadequate from the perspective of evaluating social good. Instead,
the authors evaluate various more specific population-level effects, such as the distribution of
primary-care specialists of each class and the percentage of members of each class who chose
to treat patients from the same class. Looking at this broad and socially-justified swath of
criteria, they claim that affirmative action had a positive effect on medical schools. It is
important to note that the looseness of their analysis from the perspective of a statistician
or computer scientist is not necessarily a failing: fairness is always with respect to issues of
human interest, and therefore the evaluation of the efficacy of fairness measures may take
such “soft” factors into account in a situation-dependent manner. This highlights the strong
model-dependence of fairness considerations.

[CL93] is an early, more formally-principled study of the analytical efficacy of affirmative
action policies. It gives an analytical model of hiring dynamics in which two populations,
ex-ante equivalent, are observed by an employer. Its primary result is that it is possible
for groups which are ex-ante equivalent to become caught in a negative feedback loop in
which an initial imperfect observation has compound societal effects. If the employer initially
observes one population to be less qualified than the other, the employer updates their beliefs
about the populations, and adjusts hiring accordingly. The effect of this is modelled as a
lowering of effort investment from the disadvantaged population, which in turn results in
worse observation, and the process cycles in this way.
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[KDK06] analyses the efficacy of a number of different programs which are meant to
support the broader societal goal of the equalization of workplace demographics. They found
that programs which require corporate responsibility (eg affirmative action programs and
diversity committees) were most effective, followed by network-based programs (eg mentoring
and networking programs), and with the least effective class of interventions being ones based
on individual behavioral change (eg diversity training or feedback in performance evaluations).
These findings highlight that the qualitative character of fairness interventions is relevant to
long-term fairness dynamics.

3 Computational Models of Dynamics

In this section, we describe the modelling choices and results of recent scholarship on the
fairness properties of formally-specified models. Because modelling choices are of utmost
importance in evaluating fairness results, for clarity we delineate the discussion of each pa-
per into individual sections discussing their modelling choices and analytical results. For
readability and because of the high symbol-variance among the discussed papers, modelling
choices are represented in English rather than in their mathematical formalism when doing
so does not alter their content, and some symbolic choices are standardized across papers.

Reinforcement Learning in MDPs: [JJK+16]

Modelling Choices

[JJK+16] is the first study of fairness principles in a reinforcement learning context. It
models the world as a discounted Markov decision process running for a determined number
of steps 〈S,A, P,R, T, γ〉; here, S is the state-set, A the set of actions, P : S × A → S and
R : S → [0, 1] the transition and reward matrices, T the (possibly ℵ0) number of steps,
and γ the discount factor. A snapshot of an MDP is a single (state, action, reward) triple.
Actions are taken by an independent actor, who selects a policy π that maps the previously
observed snapshots to a distribution over potential actions at every time t for 1 ≤ t ≤ T .
Each policy is associated with functions V π, Qπ which take states (resp. actions) to their
associated long-term discounted rewards; the rewards associated with the optimal policy are
denoted V ∗, Q∗.

The fairness definition used corresponds to weak meritocracy, in the sense that π is con-
sidered to be fair if it with high probability does not ever choose an action a′ over an action
a whenever a’s long-term expected reward is higher than that of a′. They show that this
weak-seeming fairness criterion can be overly restrictive, and present two weaker versions:
the approximate-choice fairness criterion and the approximate-action fairness criterion. The
former is a relaxation of the weak meritocratic fairness criteria which allows the policy to
prefer a worse choice over a better option by a factor of α, whereas the latter insists that the
learned policy prefer action a whenever the long-term reward of a is at least α more than
that of a′.

Results

The primary results of [JJK+16] pertain to the hardness of approximating fairness in the
MDP model. To approximate the optimal solution to the MDP with discount factor γ6, any

6[JJK+16] calls notion of approximation being elided here ε-optimality. It corresponds to the idea that the
learning algorithm should converge to a policy that visits states with reward arbitrarily close to the reward of the
optimal states
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approximate-action fair algorithm requires time exponential in 1
1−γ . Morever, any algorithm

satisfying weak meritocracy or approximate-choice fairness requires time exponential in the
number of MDP states in order to do so.

Discussion

Given the described “weak” nature of the fairness criterion, it is perhaps surprising that the
results are so negative. From one perspective, the fairness criterion is indeed weak: it allows,
for example, two equivalently-rewarding actions to be selected with unequal probabilities,
contradicting calibration. Although they are weak in this sense, the restriction that no
decisions violating such fairness measures can be made in the pipeline seems to be itself a key
limitation. Consider a two-class system in which both classes are equal in inherent value but
(via some external process of discrimination) have serious observational disparity. Provided
that one had outside information pertaining to the true equal-nature of the classes, it is hard
to see why a more drastic intervention than allowed by the proposed fairness criteria would
not be justified.

Single-Track Pipeline Fairness: [BKN+17]

Modelling Choices

[BKN+17] defines the notion of a n-stage pipeline. Formally, a pipeline on a set X is a
PX(f, g) := 〈X, {fi}1≤i≤T , {gi}1≤j<T 〉; the fi : X ×

∏
j<iDj → Di and gi : Di → {0, 1}

are called the decision and rule functions7. At each stage, an evaluation is made according
to the fi, and based on that evaluation, a decision is made by gi. The final decision is
given by a function defined in terms of fT if gt returns 1 for all 1 ≤ t < T and a special
failure value ∗ otherwise. Intuitively, this corresponds to a decision-making pipeline in which
an individual is scored at each stage by the decision functions fi, and may progress to the
next stage dependent on the evaluation of the rule-function gi (itself a function of the value
of fi and all previous scores). Examples of pipelines which fit into this framework include
those that filter participants (such as interview processes) and those that enact cumulative
or history-dependent decisions (such as progression through the education system). Pipelines
wherein the decision at a single timestep can depend on population-level decision statistics
from previous timesteps are not compatible with this model.

Results

Under the strong assumption that a true final positive predicted class implies positive in-
termediary predicted classes along the pipeline, [BKN+17] shows that sequential decisions
multiplicatively preserve fairness ε-bounds on equal opportunity fairness. They mention that
fairness may not be preserved when the aforementioned strong assumption is not valid.

Discussion

The central result is very weak, as it depends on there being no false negatives anywhere
along the pipeline. It may be possible to control for such factors in a situation where a single
organization is able to control the whole pipeline, by having high acceptance rates along the
pipeline until the final decision. This is likely to be impractical.

7Take the empty product to be a singleton set, so that X ×
∏
∅ ∼= X × {∅} ∼= X
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Local Dynamical Effect of Fair ML: [LDR+18]

Modelling Choices

[LDR+18] is a seminal paper in machine learning fairness. It takes the perspective that it is
the downstream effect of fairness interventions, rather than the selection rate of a fairness-
aware model, which is of primary interest. In order to model this, groups A,B are given score
distributions πA, πB over a finite set X ; these distributions represents the groups’ inherent
characteristics. An external institution selects policies τA, τB : X → [0, 1], which correspond
to selection rates by group and score. The model assumes that the institution can calculate
the utility of its own policies, and moreover that the average effect of a policy on the members
of a group j ∈ {A,B} with some initial score x is also calculable. Say that a policy results
in long-term improvement (resp. decline) for a group if the change in average score for that
group increases (resp. decreases) as the result of a policy. Say the policy results in stagnation
if there is no such change. Say that a policy causes active harm if it causes long-term decline
in a population relative to the base rate, relative harm if it causes decline relative to the
change caused by the institution’s unconstrained optimal policy, and relative improvement in
the case where it causes more improvement than does the unconstrained optimal policy.

Results

The results of [LDR+18] are manifold. Foremost, they show that both equal opportunity
and demographic parity can result in any one of decline, stagnation, or increase. Under some
conditions – eg that the two feature distributions πA, πB are equal up to translation – more
can be shown: demographic parity can cause active harm (by overallocating to the disadvan-
taged class) while equal opportunity cannot. Moreover, demographic parity is always more
“generous” to the disadvantaged class than equal opportunity, and so much so that it is never
less generous than the unconstrained classifier. Under the assumption that the institution
has more to lose than the individual does in ratio, the authors additionally show that it is
not possible for the institution’s unconstrained policy to cause active harm. They formally
show that threshold policies are preferable from a fairness perspective in this model. They
introduce the outcome curve, a graph of selection rate against demographic improvement,
and show that it must be concave in this model. This visual tool makes it easy to interpret
their main theorems; for a visual, we refer the reader to [LDR+18].

Discussion

The framework presented in [LDR+18] is more general than previously published models,
and has the benefit of directly addressing the effects of varying fairness criteria. It is highly
interpretable, as outcome curves can be plotted for various fairness criteria, and qualitatively
evaluated against the institutional utility plotted against the same selection rate. This sort
of analysis allows policy-makers, value-ethicists, and institutional leaders to directly estimate
the relative fairness and institutional effects of varying fairness measures. Such analysis is a
necessary precondition for the concurrent moral and fiscal evaluation of a classifier.

The model in [LDR+18] has the property of only dealing with local fairness dynamics –
the changes in outcome are measured against a single application of the decision policy to
the population. The authors argue that this is necessary for most applications of fairness
dynamics, as longer-term effects may be overridden by external societal factors. The extent
to which this is true could be a matter of debate.

There are a number of (perhaps necessary) downsides to this approach. Although the
single-decision effects are more easily integrated into a fairness plan for an individual decision
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maker, the focus on single-turn effects can tell a different story than a longer-term view of
dynamics might. This is made clear in [DSA+20].

A few assumptions inherent in the model are worth mentioning. The first is that the
average effect on members of a class who have a given initial score is assumed to be a
known deterministic function. Similarly, the model assumes that the institution is able to
deterministically model its own policy utility. One can imagine numerous scenarios when
such deterministic information is not available. Lastly, many results (including the non-harm
of unconstrained optimization) depend on the assumption that the institution takes more risk
than the individual does, ie that it has relatively higher loss associated with a false positive
than the individual has for the expected change in score associated with a false negative.

Simulating Global Dynamics: [DSA+20]

Modelling Choices

[DSA+20] puts the focus directly on the challenge of accurately modelling fairness dynamics.
It introduces ml-fairness-gym, a Python package implementing OpenAi’s gym reinforcement
learning environment (see [BCP+16]). ml-fairness-gym as described in [DSA+20] contains
three environments, corresponding to various toy models of fairness. One of these models
is that of [LDR+18]; the others detailed in [DSA+20] are an attention-allocation model (ie
predictive policing, similar to [EFN+17]), and a college admissions environment meant to
evaluate affirmative action effects. These environments and the standardized framework that
supports them allow for simulation under varying policies and parameter values, and provide
a means of evaluating the longer-term dynamical effects of fairness interventions in various
models by allowing counterfactuals to be tested.

Results

The results of this paper, especially the simulation results relevant to the [LDR+18] paper,
are of particular interest. First, [DSA+20] shows that the qualitative character of a fairness
effect can be different in the long-term than after a single step as in [LDR+18].

In particular, simulations in a lending environment like in [LDR+18] show that while equal-
opportunity can do relative harm by overlending (resulting in a lower long-term credit score
for individuals of a disadvantaged class), such an effect may not necessarily be detrimental
from the perspective of a disadvantaged class itself. Indeed, the disadvantaged group still
receives the same number of loans in the long-term case even though their credit scores have
been systematically lowered. From the perspective of the “disadvantaged group”, it is not
clear whether this really is a disadvantage at all.

Secondly, the assumptions of [LDR+18] may not hold up exactly in the real-world. We
noted the assumption that the institutional lender in [LDR+18] is assumed to take more risk
than the applicant for most of their analysis. This holds in most real-world cases, but may
not in edge cases. In particular, individuals with a maximum credit score of 800 take more
risk than the bank does in applying for a loan8, and such effects ultimately result in the
permanent lowering of credit scores to below the maximum threshold.

Thirdly, optimizing for local fairness dynamics may not be optimal for global fairness
dynamics. In particular, implementing local equal opportunity constraints at each instance
does not result in an optimal summed global true positive rate. This is shown both empirically
in the simulation of the [LDR+18] model, and analytically as a formal theorem.

8From the sole perspective of credit-score maximization, of course.
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Discussion

The simulations described in [DSA+20] give clear evidence that fairness considerations are
only properly understood in the dynamical context, and that this longer-term context in-
troduces additional complexities. It highlights the importance of simulating toy models of
fairness-relevant situations in order to gain insight into the disparate effects that varying mea-
sures can have, and cautions that even models that consider short-term dynamics may not
adequately capture the limiting effects of a given policy. There has since been one more paper
published, [ASHS19], contributing a new environment to ml-fairness-gym. More work of
this sort is warranted.

Other Models

[LWH+20] analyzes a model in which individuals invest in some preparatory good (eg educa-
tion) in a rational manner dependent on their expected utility gain, and then an institution
makes a decision (eg hiring) based on the qualification level presented by an individual. This
is very similar to the setting of [CL93] in the historical literature on affirmative action in
hiring. [MOS18] is another recent paper which considers a highly similar situation, studying
the effects of affirmative-action type policies on a two-stage selection process.

[HC17] considers a dynamical model of hiring fairness in which the labour market is split
into two sub-markets: a temporary labour market in which the disadvantaged class is system-
atically boosted in order to attain some fairness goal, and then a permanent labour market
into which workers transition after some time. They give recursive solutions characterizing
the distributions of good workers in both the temporary and permanent labour markets of
their model.

[EFN+17] considers a model of predictive policing in which there are two types of crime:
reported crime (which is a function of neighbourhood only) and discovered crime (which is
a function of police allocation). By modelling this using a generalized Polya urn model,
they transfer standard results about the steady-state of such urns into a fairness context. In
particular, they show that this model captures many of the (unfair) features of the PredPol

policing algorithm.
[ZKTL19] discusses the effects of a decision rule on differentially-distributed classes in a

group setting where negative decisions influence individuals to remove themselves from the
group. This is similar to the filtering pipeline context of [BKN+17]. They assume that the
decision rule has a retention effect which is monotone in the sense that if group A makes
up a larger (resp. smaller) fraction of the population at some time t as compared to the
fraction represented by A at time t′, then the retention rates after the corresponding one-shot
decisions will be larger (resp. smaller). Under the retention monotonicity assumption, Zhang
et. al. show that a group’s proportion can, unsurprisingly, only change monotonically in the
general case: once a population’s representation begins to grow (resp. shrink) it continues
to do so. They also show that the retention monotonicity assumption is satisfied in the case
where the retention rate for groups is a decreasing function of some function of the group’s
observational decision parameters. One example of a model which fits this description relates
to software design: the retention rate of users is a decreasing function of the error rate of a
piece of software.

There is a growing body of work that applies similar techniques in the study of the multi-
armed-bandit problem (a special case of an MDP with only a single state) in a reinforcement
learning context. For research in this direction, see [JKMR16, BBC+16, BBK17, KKM+17,
LRD+17, KMR+18]. For a formal treatment of the multi-armed bandit setting see [Sli19].
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4 Discussion

Fairness is not important in a vacuum, and there is no utility at all in working to make
machine-learning systems (or any decision-making system) work independently of whether
one has tied their shoelaces or not. Rather, sensitive attributes are meaningfully sensitive
because they correspond to groupings which have been historically disadvantaged, and thus
for which historical decisions – which are embedded in observational data – do not reflect the
(idealized) equal nature of the sensitive and nonsensitive groups. This highlights that the
utility of fairness as an applied concept9 is a function of its effects on the relevant population
rather than a pure function of its direct selection rate across populations. This perspective is
largely elided by single-shot fair classification, which obviates the fundamental difficulty: we
live in a reactive world, rife with feedback loops and extant observational bias.

The results of the described papers make the following general points clear:

• Measures that promote static fairness may not promote dynamical fairness ([DSA+20]).

• Dynamical fairness has difficulties analogous to those faced by static fairness: there
are similar formal impossibility results, although approximations are possible ([KRZ18,
AKRZ20, DSA+20]).

• Dynamical fairness also suffers from the added difficulty in modelling, as social responses
to fairness measures are at best weakly understood ([KDK06]) and small changes in
model parameters can have large dynamical effects ([DSA+20]).

• Local dynamical fairness effects can be quantified under reasonable assumptions ([LDR+18]),
but long-term fairness effects may be seriously different even under the same assump-
tions ([DSA+20]).

Taken together, these provide further evidence for the inadequacy of considering fairness
measures at a single timestep: static treatment of fairness ignores these necessary difficulties,
rather than facing them head-on.

5 Conclusion

To the extent that all that matters for fairness is the uniform application of rules which are
understood to be fair (and thus necessarily uniform for observationally equivalent individuals
of given sensitive class10), it is wholly irrelevant whether the ultimate arbiter of the decision
be human or machine, provided the same decision is made11. The study of the realizability of
fairness goals is thus independent from the study of machine fairness interventions, and the
fact that the former has been studied extensively in the social science literature on the basis of
observational criteria therefore can and should inform current work. The historical literature
in social sciences is rife with examples of the central importance of dynamical considerations
in fairness applications, and moreover provides numerous case-studies in which dynamical
considerations cause myopic fairness goals to compose in potentially-surprising ways. Recent
analytical results in computer science have characterized some of these nonobvious dynamical
effects, and simulations can serve as a useful tool for experimentation or qualitative analysis in
the absence of formal guidelines. Together, historical effects, formal theorems, and simulated

9Which, again, we strongly believe to be its only utility.
10This condition is equivalent to the specification that decisions must be made according to potentially class-

specific thresholds, whether probabilistic or discrete, in order to have a chance at being fair.
11Of course, this is not the case when considering an explainability or accountability perspective; this solely refers

to the observationally-dependent nature of the decision.
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experiments all highlight the importance of careful modelling of the feedback effects of fairness
constraints.
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